Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 19(2): 170-175, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31907417

RESUMO

Spin-orbit coupling stands as a powerful tool to interconvert charge and spin currents and to manipulate the magnetization of magnetic materials through spin-torque phenomena. However, despite the diversity of existing bulk materials and the recent advent of interfacial and low-dimensional effects, control of this interconversion at room temperature remains elusive. Here, we demonstrate strongly enhanced room-temperature spin-to-charge interconversion in graphene driven by the proximity of WS2. By performing spin precession experiments in appropriately designed Hall bars, we separate the contributions of the spin Hall and the spin galvanic effects. Remarkably, their corresponding conversion efficiencies can be tailored by electrostatic gating in magnitude and sign, peaking near the charge neutrality point with an equivalent magnitude that is comparable to the largest efficiencies reported to date. Such electric-field tunability provides a building block for spin generation free from magnetic materials and for ultra-compact magnetic memory technologies.

2.
ACS Nano ; 8(3): 2782-7, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24460428

RESUMO

Due to the atomic-scale resolution, scanning tunneling microscopy is an ideal technique to observe the smallest objects. Nevertheless, it suffers from very long capturing times in order to investigate dynamic processes at the nanoscale. We address this issue, for vortex matter in NbSe2, by driving the vortices using an ac magnetic field and probing the induced periodic tunnel current modulations. Our results reveal different dynamical modes of the driven vortex lattices. In addition, by recording and synchronizing the time evolution of the tunneling current at each pixel, we visualize the overall dynamics of the vortex lattice with submillisecond time resolution and subnanometer spatial resolution.

3.
Adv Mater ; 26(13): 2034-40, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24343908

RESUMO

Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...